본문 바로가기
천문학

자외선 천문학

by 시드니왕따 2023. 9. 8.

자외선 천문학은 10나노미터에서 320나노미터 영역 대의 자외선 파장을 관측하는 천문학이다. 이 파장대의 빛은 지구대기에 의해 흡수되기 때문에 자외선천문대는 지구대기층이 얇은 높은 고도, 또는 우주에 세워져야 한다. 자외선 천문학은 뜨겁고 파란 별들로부터 나오는 열복사와 방출선들을 연구하는데 가장 적합한 분야이다. 우리은하 밖의 다른 은하에 위치한 푸른 별들은 몇몇 자외선 관측의 주요 관측 대상이 되어 왔다. 자외선 영역의 또 다른 관측 대상으로는 행성상 성운, 초신성 잔해, 활동은하핵 등이 있다. 그러나, 자외선은 성간 먼지에 의해 쉽게 흡수되기 때문에 자외선 관측은 소광을 정확히 보정해 주어야 한다.

X-선 천문학은 엑스선 파장대의 빛을 내는 천체를 연구하는 학문이다. 전형적으로 X-선은 매우 뜨거운 천체들로부터 싱크로트론 복사, 제동복사, 그리고 흑체복사의 형태로 방출된다. X-선은 지구대기에 의해 흡수되기 때문에, 높은 고도로 띄우는 풍선, 로켓, 비행선을 이용하거나 우주망원경 형태로 관측이 이루어지고 있다. 잘 알려진 X-선 천체로는 엑스선 이중성, 펄사, 초신성 잔해, 타원은하, 은하단, 활동은하핵 등이 있다.

 

중력파 천문학은 새롭게 발생한 천문학의 분야로서, 블랙홀, 중성자별 등으로 구성된 쌍성들이 내는 것 같은 중력파를 검출하는 것을 목적으로 하고 있다. 현재까지 레이저 간섭계 중력파 관측소(LIGO) 같은 관측소가 만들어졌고, 2016년 중력파 검출에 성공함으로써 아인슈타인의 상대성 이론의 강력한 증거가 되었다.

감마선 천문학은 가장 짧은 전자기 파장대의 천체를 연구하는 천문학 분야이다. 감마선은 컴프턴 감마선 천문대와 같이 인공위성에 의해, 또는 대기 체렌코프 망원경이라 불리는 특화된 망원경을 사용하여 관측된다. 체렌코프 망원경은 감마선을 직접적으로 검출하진 않지만, 감마선이 지구대기에 의해 흡수되었을 때 생성되는 가시광 영역의 반짝임(체렌코프 복사)을 감지한다. 대부분의 감마선을 내뿜는 천체는 감마선 폭발이다. 감마선 폭발은 짧은 시간 동안 강한 감마선을 방출하고 금방 어두워지는 천체이다. 그 외에 감마선을 내뿜는 천체로는 펄사, 중성자별, 활동은하핵이 있다.

전자기파 이외에도 중성미자, 중력파 등을 이용하여 우주에서 일어나는 현상을 관측할 수 있다. 또한 탐사선을 이용하여 달이나 혜성 같은 지구 밖의 천체에서 직접 시료를 채취하기도 한다.

뉴트리노는 주로 태양 내부나 초신성 폭발에서 만들어지며, 고에너지 입자인 우주선이 차례로 붕괴하거나 대기의 입자와 반응하면서 만들어지기도 한다. 이러한 뉴트리노는 물질과 거의 반응하지 않으므로, 지하 시설에 위치한 커다란 용기에 많은 양의 물과 얼음을 채워 놓고 이들이 뉴트리노와 아주 가끔 반응할 때 나오는 미세한 빛을 검출하는 방식으로 관측한다. 이러한 뉴트리노 검출기로는 SAGE, GALLEX, Kami oka II/III 같은 특별한 지하 시설이 있다.


행성 과학자들은 직접적인 관측을 위해, 우주탐사선을 행성에 보내거나 시료를 채취해서 돌아오는 방식을 이용하기도 한다. 예를 들어, 탐사선이 행성을 지나쳐 가면서 사진을 찍거나, 행성 표면에 직접 착륙해서 실험을 수행하기도 하고, 표면에 탐사선을 충돌시키고 이때 발생하는 물질들을 원거리에서 관측하기도 한다.

 

가까운 별들의 연주시차를 측정하여 별까지의 거리를 구하는 것은 우주의 크기를 가까운 곳부터 먼 곳까지 차근차근 정립해나가는 소위 우주 거리 사다리가 구성하는가가 되는 일이다. 또한 가까운 별까지의 거리를 재는 일은 별의 절대 광도 같은 물리량을 정확히 잴 수 있으므로 매우 중요하다. 별들의 시선속도를 재는 것과 함께 고유운동을 재면 별들의 3차원적인 운동을 알 수 있고, 이를 통해 우리은하 내의 천체들이 어떻게 움직이는지를 연구할 수 있다. 1990년대부터는 별의 궤도가 예상과는 달리 약간 흔들거리는 현상을 정확하게 측정해서 이러한 별의 주위를 공전하고 있는 외계행성을 찾는 방법이 널리 이용되고 있다.

측정하는 천문학뿐만 아니라 자연과학에서 가장 오래된 분야 중의 하나로써, 천체의 위치를 측정하는 학문 분야다. 역사적으로 해, 달, 행성, 별들의 위치를 정확히 아는 것은 항해나 달력을 만드는 데 필수적이었기 때문이다. 측성학은 행성의 위치를 매우 정확하게 측정함으로써 중력의 섭동에 관해 잘 이해할 수 있도록 기여했으며, 이는 행성들의 위치를 정확하게 예측할 수 있는 천체역학의 발전으로 이어졌다. 최근에는 근지구천체를 추적함으로써 이러한 혜성이나 소행성들이 지구와 충돌하거나 비껴가는 위험한 경우를 예측하는 중요한 역할을 하고 있다.

 

이론 천문학자들은 천체나 천문현상을 이해하기 위해 해석적인 모형이나 컴퓨터를 이용한 수치 모형 같은 방법을 이용한다. 이러한 방법들은 각각 장점이 있다. 해석적인 모형은 다시말해 어떤 문제를 수식으로 서술하는 방법 어떤 현상에 대하여 보다 직접적인 통찰력을 제공하며, 수치적인 모형은 매우 복잡한 현상을 몇 가지 기본 물리 법칙으로부터 계산해 냄으로써 어떤 현상이 존재할 수 있는지 등을 이해하는 데 도움이 된다.

이론 천문학자들은 모형을 만들고, 그 모형이 옳다면 어떤 결과를 가져올지를 연구한다. 이를 바탕으로 관측자들은 여러 이론 중 어느 것이 옳은 것인지를 가려줄 관측 자료들을 모으거나 실험을 계획하게 된다. 새로운 관측 자료가 얻어지면, 이론 천문학자들은 이 관측 결과를 설명할 수 있게 꾸준히 모형을 바꾸고 발전시킨다. 만약 자신의 이론이 새롭게 얻어진 관측 자료와 양립할 수 없는 경우에는, 그 관측 결과를 맞힐 수 있게 모형을 약간 수정할 수 있지만, 만약 이론이 아주 많은 관측 자료와 모순된다면, 그 모형은 폐기되기도 한다.

'천문학' 카테고리의 다른 글

외부은하  (0) 2023.09.09
불규칙은하  (0) 2023.09.08
항성천문학  (0) 2023.09.08
전파천문학  (0) 2023.09.08
기원과 역사  (0) 2023.09.08